Cover Image

A hybrid data-driven BSDF model to predict light transmission trough complex fenestration systems including high incident directions

Marek Krehel, Lars Oliver Grobe, Stephen Wittkopf

Abstract


The transmission and distribution of light through Complex Fenestration Systems (CFS) impacts visual comfort, solar gains and the overall energy performance of buildings. For most fenestration, scattering of light can be approximated as the optical property of a thin surface, the Bidirectional Scattering Distribution Function (BSDF). It is modelled in simulation software to replicate the optical behaviour of materials and surface finishes. Data-driven BSDF models are a generic means to model the irregular scattering by CFS employing measured or computed data-sets. While measurements are preferred by researchers aiming at realism, they are constraint by the measurement geometries of the employed instrumentation. Particularly for large samples prevailing in the field of building sciences, measurements of the BSDF for directions close to grazing are impacted by shadowing and edge effects. Reliable extrapolation techniques are not available due to the irregularity of the BSDF. Computational simulation is not limited by such constraints at the cost of lower realism. A hybrid approach is therefore proposed. The BSDF of a CFS is measured for incident elevation angles from 0° to 60°. For incident elevation angles from 0° to 85°, the BSDF of the sample is computed. The BSDF acquired by both techniques in the overlapping range of directions between 0° to 60° is compared and reveals good qualitative accordance. The variance of the direct-hemispherical reflection and transmission based on the two techniques is between 3% and 28%. A hybrid data-set is then generated, utilizing measurements where possible and simulations where instrumentation cannot provide reliable data. A data-driven model based on this data-set is implemented in simulation software. This hybrid model is tested by comparison with the geometrical model of the sample. The hybrid approach to BSDF modelling shall support the utilization of BSDF models based on measured data by selectively overcoming the lack of reliable measured or extrapolated data.


Keywords


BSDF; BRDF; BTDF; Geometric optics; Scattering; Complex Fenestration Systems

Full Text:

PDF

References


Andersen, M., & de Boer, J. (2006). Goniophotometry and assessment of bidirectional photometric properties of complex fenestration systems. Energy and Buildings, 38(7), 836–848. doi:10.1016/j.enbuild.2006.03.009

Andersen, M., Rubin, M., Powles, R., & Scartezzini, J. L. (2005). Bi-directional transmission properties of Venetian blinds: Experimental assessment compared to ray-tracing calculations. Solar Energy, 78(2), 187–198. doi:10.1016/j.solener.2004.06.005

Andersen, M., & Scartezzini, J. L. (2005). Inclusion of the specular component in the assessment of bidirectional distribution functions based on digital imaging. Solar Energy, 79, 159–167. doi:10.1016/j.solener.2004.11.012

Apian-Bennewitz, P. (2010). New scanning gonio-photometer for extended BRTF measurements. Proc. SPIE, 7792, 77920O–1–20. doi:10.1117/12.860889

Ashikmin, M., Premože, S., & Shirley, P. (2000). A

Microfacet-based BRDF Generator. Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 65–74. doi:10.1145/344779.344814

Bauer, C., & Wittkopf, S. (2016). Annual daylight simulations with EvalDRC – Assessing the performance of daylight redirection components. Journal of Facade Design and Engineering. doi:10.3233/FDE-160044

Bonneel, N., van de Panne, M., Paris, S., & Heidrich, W. (2011). Displacement interpolation using Lagrangian mass transport. ACM Transactions on Graphics (TOG), 30(6), 158. doi:10.1145/2024156.2024192

Claustres, L., Paulin, M., & Boucher, Y. (2003). BRDF Measurement Modelling Using Wavelets for Efficient Path Tracing. Computer Graphics Forum. doi:10.1111/j.1467-8659..00718.x

Cook, R. L., & Torrance, K. E. (1981). A reflectance model for computer graphics. ACM SIGGRAPH Computer Graphics, 15(3), 307–316. doi:10.1145/965161.806819

Geisler-Moroder, D., & Dür, A. (2010). A new Ward BRDF model with bounded albedo. Computer Graphics Forum, 29(4), 1391–1398. doi:10.1111/j.1467-8659.2010.01735.x

Grobe, L. O., Müllner, K., & Meyer, B. (2015). A novel data-driven BSDF model to assess the performance of a daylight redirecting ceiling panel at the Calgary Airport Expansion. In PLDC 5th Global Lighting Design Convention (pp. 240–243).

Grobe, L. O., Noback, A., Wittkopf, S., & Kazanasmaz, Z. T. (2015). Comparison of measured and computed BSDF of a daylight redirecting component. In CISBAT 2015 International Conference on Future Buildings and Districts (pp. 205–210).

Grobe, L. O., & Wittkopf, S. (2009). Optical Characterization of Materials and Structures for Daylighting and PV Applications.

He, X. D., Torrance, K. E., Sillion, F. X., & Greenberg, D. P. (1991). A comprehensive physical model for light reflection. ACM SIGGRAPH Computer Graphics, 25(4), 175–186. doi:10.1145/127719.122738

Kautz, J., & McCool, M. D. (1999). Interactive rendering with arbitrary BRDFs using separable approximations. ACM SIGGRAPH 99 Conference Abstracts and Applications on - SIGGRAPH ’99, 253. doi:10.1145/311625.312153

Köster, H. (2015). Daylight modulation. Frankfurt: WITAG-Verlag.

Krehel, M., Kaempf, J., & Wittkopf, S. K. (2015). Characterisation and Modelling of Advanced Daylight Redirection Systems with Different Goniophotometers. Proc. CISBAT 2015, International Conference. doi:10.13140/RG.2.1.2399.3047

Kurt, M., & Edwards, D. (2009). A survey of BRDF models for computer graphics. ACM SIGGRAPH Computer Graphics. doi:10.1145/1629216.1629222

Lafortune, E. P. F., Foo, S.-C., Torrance, K. E., & Greenberg, D. P. (1997). Non-linear approximation of reflectance functions. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH ’97, 31(3), 117–126. doi:10.1145/258734.258801

Leloup, F. B., Forment, S., Dutré, P., Pointer, M. R., & Hanselaer, P. (2008). Design of an instrument for measuring the spectral bidirectional scatter distribution function. Applied Optics, 47(29), 5454–5467. doi:10.1364/AO.47.005454

Matusik, W., Pfister, H., Brand, M., & McMillan, L. (2003). A data-driven reflectance model. ACM Transactions on Graphics. doi:10.1145/882262.882343

Mohanty, L., Yang, X., & Wittkopf, S. K. (2012). Optical scatter measurement and analysis of innovative daylight scattering materials. Solar Energy, 86(1), 505–519. doi:10.1016/j.solener.2011.10.027

Montes, R., & Ureña, C. (2012). An Overview of BRDF Models. Granada.

Ngan, A., Durand, F., & Matusik, W. (2005). Experimental analysis of BRDF models. In Proceedings of the Eurographics Symposium on Rendering (pp. 117–126). doi:10.2312/EGWR/EGSR05/117-126

Noback, A., Grobe, L. O., & Wittkopf, S. (n.d.). Quantifying differences in high-resolution BSDF from design and de-facto variants of a daylight redirecting component. Solar Energy.

Phong, B. T. (1975). Illumination for computer generated pictures. Communications of the ACM, 18(6), 311–317. doi:10.1145/360825.360839

Reinhart, C. F., & Andersen, M. (2009). Development and Validation of a Model for a translucent panel. Information Systems Journal, 877(2), 1–13. doi:10.1016/j.jchromb.2009.10.016

Renhorn, I. G. E., & Boreman, G. D. (2008). Analytical fitting model for rough-surface BRDF. Opt. Express, 16(17), 12892–12898. doi:10.1364/OE.16.012892

Roland, S., Wittkopf, S., & Grobe, L. O. (2016). An out-of-core photon mapping approach to daylight coefficients. Journal of Building Performance Simulation. doi:10.1080/19401493.2016.1177116

SM Rusinkiewicz. (1998). A new change of variables for efficient BRDF representation. Rendering Techniques, 11–22.

Tian, Z., Weng, D., Hao, J., Zhang, Y., & Meng, D. (2013). A data driven BRDF model based on Gaussian process regression. In Proc. SPIE 9042, 2013 International

Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments. Beijing. doi:10.1117/12.2036467

Torrance, K. E., & Sparrow, E. M. (1967). Theory for Off-Specular Reflection From Roughened Surfaces. Journal of the Optical Society of America, 57(9), 1105. doi:10.1364/JOSA.57.001105

Tugce, K., Grobe, L. O., Bauer, C., Krehel, M., & Wittkopf, S. (2016). Three approaches to optimize optical properties and size of a South-facing window for spatial Daylight Autonomy. Building and Environment. doi:10.1016/j.buildenv.2016.03.018

Walter, B., Marschner, S., Li, H., & Torrance, K. (2007). Microfacet models for refraction through rough surfaces. Eurographics, 195–206. doi:10.2312/EGWR/EGSR07/195-206

Ward, G. J. (1992). Measuring and modeling anisotropic reflection. ACM SIGGRAPH Computer Graphics, 26(2), 265–272. doi:10.1145/142920.134078

Ward, G., Kurt, M., & Bonneel, N. (2015). Reducing Anisotropic BSDF Measurement to Common Practice. doi:10.2312/mam.20141292

Ward, G., Mistrick, R., Lee, E. S., McNeil, a, & Jonsson, J. C. (2011). Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance. Leukos, 7(January), 241–261. doi:10.1080/15502724.2011.10732150

Westin, S. H., Li, H., & Torrance, K. E. (2004). A comparison of four brdf models. Proc. Eurographics Symposium on Rendering, 1–10.

Yu, Y.-W., Chen, Y.-L., Chen, W.-H., Chen, H.-X., Lee, X.-H., Lin, C.-C., & Sun, C.-C. (2012). Bidirectional scattering distribution function by screen imaging synthesis. Optics Express, 20(2), 1268–80. doi:10.1364/OE.20.001268




DOI: http://dx.doi.org/10.7480/jfde.2016.4-3.1191

Copyright (c) 2016 Marek Krehel

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

JFDE . ISSN 2213-3038